
Client/Server Caching
Using File Streams
by Neil McClements

Despite the current vogue for
thin client applications,

there’s still life left in the thick cli-
ent yet. Plenty of applications have
to contend with limited network
bandwidth, an over-stretched data
server and conflicting processing
requirements. This article explores
ways of easing the strain. We’ll see
how components can be devel-
oped to cache both themselves
and their data locally. With client
caching in place, the data server
can spend less time servicing
routine client requests. Network
bandwidth can be clawed back for
essential traffic, too. And users
should find their applications more
responsive and configurable.

Data Caching
Two-tier client server systems typi-
cally consist of a single database
which services multiple clients.
Though the server is optimised for
data manipulation, a collection of
PCs will often represent consider-
ably more processing clout. The
difficulty lies in co-ordinating this
power. Ideally, we should be able
to reduce the number of times each
application hits the database. This
will cut down network traffic
across a WAN/LAN and, in theory,
should improve the performance
of the applications themselves.

Data caching allows regularly re-
trieved data to be held locally on
the client rather than on the data-
base server. Perhaps the easiest
and most obvious way to imple-
ment this approach is to hard-code
common data into an application
or its components. For instance,
for a combo box which contains a
set of currency codes the devel-
oper might write a fragment of
code in a form create procedure
like Listing 1.

This works just fine. However,
there is always the possibility that
your client will start trading with a

Dutch partner. Adding Dutch
Guilders to the list of currencies is
simple enough in itself. However,
this simple change requires the ap-
plication to be rebuilt and redis-
tributed. Again, this can be easy
enough for a handful of client PCs.
But how do we manage synchro-
nised rapid updates to dozens or
even hundreds of client PCs?

Much better, then, to hold list
items like currency codes on a da-
tabase. The list box would popu-
late itself using a piece of code like

Listing 2. Adding a currency to the
list would entail inserting a new
record on the currency table. Simi-
larly, deleting or changing
currency details would be accom-
plished by altering the records on
the currency table.

Though storing items on the da-
tabase is a step forward, the cost of
such flexibility is performance. The
data server is hit each time a cur-
rency combo box is populated. The
list is refreshed from scratch each
time, even if the currency details

procedure Populate;
var
 qry:TQuery;
 code, name:string;
begin
 qry:=TQuery.create;
 qry.sql.add(’select currency_code, currency_name from currency’);
 qry.open;
 qry.first;
 while not qry.eof do begin
 code := qry.fieldbyname(’currency_code’).asString;
 name := qry.fieldbyname(’currency_name’).asString
 MyCombo.items.add(code + ’ - ’ + name);
 qry.next;
 end;
 qry.free;
end;

➤ Listing 2

MyCombo.items.add(’GBP - Pounds Sterling’);
MyCombo.items.add(’FFr - French Franc’);
MyCombo.items.add(’USD - US Dollar’);

➤ Listing 1

procedure TCacheForm.btnLoadFromStreamClick(Sender: TObject);
var
 stream:tfilestream;
begin
 stream := TFileStream.create(’c:\test.cfg’, fmOpenRead);
 combobox1.items.loadfromstream(stream);
 stream.free;
end;

➤ Listing 4

procedure TCacheForm.btnSaveToStreamClick(Sender: TObject);
var
 stream:tfilestream;
begin
 stream := TFileStream.create(’c:\test.cfg’, fmCreate or fmOpenWrite);
 ComboBox1.items.savetostream(stream);
 stream.free;
end;

➤ Listing 3

46 The Delphi Magazine Issue 20

haven’t changed. Many applica-
tions can tolerate dozens of clients
periodically refreshing their con-
trols from the same server. How-
ever, there can be circumstances
where it is preferable to minimise
the volume of repetitive database
requests and network traffic.

Data Shelf Life
In any single application there can
be data of varying ages. Some data
changes regularly throughout the
day, for example account balances.
Other data, like currency codes,
has a very long shelf life. Caching
can be used to good effect for data
that tends to change rarely. Since
there is a relatively consistent set
of world currencies, it might make
sense to store all the possibilities
on the database. A currency list
component can be refreshed once
from the database. Thereafter, the
component caches the details until
they change and a full refresh is
needed again.

Caching Using File Streams
File streams are just sequences of
binary data held in a file. Objects or
components can be dropped into a
stream as a series of bytes. When
the objects are retrieved, Delphi
reconstitutes the byte stream in
the correct object form, properties
and all. Streams derive much of
their power and flexibility from this
object oriented approach. A hand-
ful of VCL objects have their own
SaveToStream and LoadFromStream
methods. For example, the con-
tents of a combo box could be
cached using code like Listing 3.

The stream is created with the
target filename and file mode as
parameters. The combo box items
method SaveToStream writes each
item to the file in turn. Reading the
values back is done in a similar
manner. This time, we need to
change the file mode to fmOpenread
and call the TStrings method Load-
FromStream. See Listing 4. Choose
your file mode carefully. Forgetting
to change the mode from fmOpen-
Write causes an empty stream to be
recreated over the top of the
existing cache file.

Caching can be taken further. In
addition to recording the combo

box items, we could record the se-
lected combo item between appli-
cation sessions. When the user
started the application they would
see the selection from last time.
This provides a convenient means
of storing a user’s application pref-
erences. For instance, a cached
combo box could hold a user’s pre-
ferred display font for other com-
ponents in the same application.

Cached Combo Box
Caching behaviour can be added to
a combo box by deriving a new
TCachedCombo from TComboBox. The
new component will provide a cou-
ple of extra methods: ReadList-
FromStream and WriteListToStream.
The stream file will be identified
using a ConfigFile property. For
convenience, the new component
is data aware. Items can be loaded
from a DataSource identified by the
ItemsDataSource property. The ac-
companying ItemsDataField prop-
erty is used to pick the correct field
for display.

The combo is filled initially by
calling Populate. Thereafter, the
component can be refreshed either
from its cache or by reading data
from the DataSource again. The Use-
Cache property allows the devel-
oper to switch the component’s
mode from DataSource driven to
cached.

The developer can enter the
combo items manually at design
time or, preferably, once from the
DataSource to provide items to
cache. The component code is
shown in Listing 5.

The first step requires the defini-
tion of a TStringList wrapper to
hold both the combo item list and
the current selection. The TCom-
boList exists to enable its publish-
ed properties to be streamed to a
file. By deriving the data structure
from a TComponent, both published
and public properties can be
recorded in a stream.

The TCachedCombo registers the
new object using Register-
Class(TComboList). This ensures
that when the time comes to re-
trieve the combo details, Delphi
recognises the format of the
objects in the file stream and re-
constitutes them correctly.

Combo box details are cached
using the WriteListToStream
method. A temporary TComboList is
created and the combo items are
assigned along with the current
itemindex. The stream is created
as before, only this time the TCom-
boList is written to the stream
rather than just the combo box
items.

Retrieving the cached data is
achieved using ReadListFromStream.
The stream file is opened and
Stream.ReadComponent(nil) returns
the component. At this point, the
component could be anything: list
box, string list or TComboList. Since
the TComboList class has been reg-
istered in the cached combo’s con-
structor the “mystery” component
can be cast to a TComboList. It is
then a simple matter to set the
TCachedCombo items and ItemIndex
to the retrieved ItemValues and
SelectedItem properties.

Cached Calendar Component
This approach to data caching can
be extended for more complex
caches. Any cache can be imple-
mented as a registered TComponent
descendent. These objects can
then be written to or read from
streams. A TCalendar could be
adapted to record significant dates
like public holidays in a file stream.
As the calendar was displayed, the
recorded dates would be read from
the stream. Notable dates could be
shown in red and a user would be
able to click on the date for a popup
summary of the occasion.

Listing 6 shows the code for a
cached, data aware calendar com-
ponent. This component illustrates
the significance of data shelf life in
cache design. Typically, a calendar
showing public holidays would
only need to be refreshed from a
database once per year.

The holidays are unlikely to
change within any one year, so by
caching dates, the component
spares the host database from un-
necessary refreshes each time the
parent application is started. Of
course, a more dynamic business
calendar could be refreshed
weekly or daily, perhaps showing
delivery dates, invoice dates and
so on. The component leaves the

April 1997 The Delphi Magazine 47

unit CachedCombo;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, DBCtrls, DBTables, DB;
type
 { ComboList - holds the items and itemindex briefly whilst
 written to/retrieved from a stream }
 TComboList = class(TComponent)
 private
 FValues:TStringList;
 FItemIndex:longint;
 public
 constructor Create(AOwner:TComponent);override;
 destructor Destroy; override;
 published
 property ItemValues:TStringList
 read Fvalues write Fvalues;
 property SelectedItem:longint
 read FItemIndex write FItemIndex;
 end;
 { TCachedCombo - allows the items to be filled from a
 datasource and cached }
 TCachedCombo = class(TComboBox)
 private
 FConfigFile:string;
 FItemsFieldDataLink:TFieldDataLink;
 FUseCache:boolean;
 function GetItemsDataField:string;
 function GetItemsDataSource:TDataSource;
 procedure ItemsDataChange(Sender:TObject);
 procedure SetItemsDataField(const theFieldName:string);
 procedure SetItemsDataSource(theSource:TDataSource);
 protected
 procedure Notification(AComponent: TComponent;
 Operation: TOperation);
 procedure SetUseCache(CacheOnOff:boolean);
 public
 constructor Create(Owner:TComponent);override;
 destructor Destroy; override;
 function Populate:boolean;
 function ReadListFromStream:boolean;
 function WriteListToStream:boolean;
 published
 property ConfigFile:string
 read FConfigFile write FConfigFile;
 property ItemsDataField:string
 read GetItemsDataField write SetItemsDataField;
 property ItemsDataSource:TDataSource
 read GetItemsDataSource write SetItemsDataSource;
 property UseCache:boolean
 read FUseCache write SetUseCache default false;
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents(’more...’, [TCachedCombo]);
end;
constructor TComboList.Create(AOwner:TComponent);
begin
 inherited Create(AOwner);
 Fvalues := TStringList.create;
end;
destructor TComboList.Destroy;
begin
 { Tidy up after the component before calling its
 ancestor’s destructor }
 Fvalues.free;
 inherited destroy;
end;
constructor TCachedCombo.Create(Owner : TComponent);
var exePath : string;
begin
 inherited Create(Owner);
 { Prepare the data link }
 FItemsFieldDataLink:=TFieldDataLink.Create;
 FItemsFieldDataLink.OnDataChange := ItemsDataChange;
 { Default config file used to cache dates between
 application sessions }
 if FConfigFile = ’’ then begin
 exePath := ExtractFilePath(application.exename);
 FConfigFile := exePath+’Combo.cfg’;
 end;
 { Register the date list component so Delphi knows how to
 handle it in file streams }
 RegisterClass(TComboList);
end;
destructor TCachedCombo.Destroy;
begin
 FItemsFieldDataLink.free;
 inherited Destroy;
end;
function TCachedCombo.WriteListToStream : boolean;
var stream : TfileStream;
 ComboList : TComboList;
begin
 { Write the combo items to the cache via a file stream }
 try
 ComboList := TComboList.create(Owner);

 ComboList.ItemValues.assign(self.items);
 ComboList.SelectedItem:=ItemIndex;
 stream := TFileStream.create(FConfigFile,
 fmCreate or fmOpenWrite);
 stream.WriteComponent(ComboList);
 stream.free;
 ComboList.free;
 Result := true;
 except
 on E : exception do
 Result := false;
 end; { except }
end; { function }
function TCachedCombo.ReadListFromStream:boolean;
var stream : TfileStream;
 ListComponent : TComponent;
begin
 try
 stream := TfileStream.create(FConfigFile, fmopenread);
 while not (stream.position = stream.size) do begin
 { Read the next component in the stream and try and
 determine what it is }
 ListComponent := stream.ReadComponent(nil);
 if (ListComponent is TComboList) then begin
 items.assign(
 (ListComponent as TComboList).ItemValues);
 self.ItemIndex :=
 (ListComponent as TComboList).SelectedItem;
 end;
 end;
 stream.free;
 Result := true;
 except
 on E : EFOpenError do Result:=false;
 end; { except }
end;
procedure TCachedCombo.SetUseCache(CacheOnOff : boolean);
begin
 { Refresh the combo box whenever the developer switches
 the component mode from cached to not-cached }
 if (CacheOnOff = True) then ReadListFromStream
 else Populate;
end;
function TCachedCombo.Populate : boolean;
var dSet : TDataset;
begin
 { Fill the combo box items string list from the datasource
 if the data link is still valid }
 if (assigned(FItemsFieldDataLink) and
 (ItemsDataSource<>nil)) then begin
 self.clear;
 dSet := FItemsFieldDataLink.DataSource.Dataset;
 dSet.Active := true;
 dSet.first;
 while not dSet.eof do begin
 self.items.add(dSet.FieldByName(
 FItemsFieldDataLink.FieldName).AsString);
 dSet.next;
 end;
 { Record updated details in the cache for next time... }
 Result := WriteListToStream;
 end else
 Result := false;
end;
{ following functions maintain datasource and data links references }

function TCachedCombo.GetItemsDataField : string;
begin
 GetItemsDataField := FItemsFieldDataLink.FieldName;
end;
function TCachedCombo.GetItemsDataSource : TDataSource;
begin
 GetItemsDataSource := FItemsFieldDataLink.DataSource;
end;
procedure TCachedCombo.SetItemsDataField(
 const theFieldName : string);
begin
 FItemsFieldDataLink.FieldName := theFieldName;
end;
procedure TCachedCombo.SetItemsDataSource(
 theSource : TDataSource);
begin
 FItemsFieldDataLink.DataSource := theSource;
end;
procedure TCachedCombo.ItemsDataChange(Sender : TObject);
begin
 if FItemsFieldDataLink.Field = nil then
 FUseCache := ReadListFromStream;
end;
procedure TCachedCombo.Notification(
 AComponent : TComponent; Operation : TOperation);
begin
 { If the datasource is removed from the application,
 reset the data source reference }
 inherited Notification(AComponent, Operation);
 if (Operation = opRemove) and (FItemsFieldDataLink <> nil)
 and (AComponent = ItemsDataSource) then
 ItemsDataSource := nil;
end;
end.

48 The Delphi Magazine Issue 20

➤ Facing page: Listing 5

cache refresh period to the devel-
oper’s discretion.

Once again, a wrapper compo-
nent is created to store the signifi-
cant date and a piece of text to act
as a description of the occasion.

The significant dates are re-
trieved in the first instance from a
query or table dataset linked to the
TDataSource identified by the Data-
Source property. Two TField-
DataLinks are set up to take the
date and occasion text from the
DataSource. They are used to up-
date the calendar’s list of signifi-
cant dates in the Refresh method.
Once the dates have been retrieved
from the DataSource they are imme-
diately cached for later use.

The calendar itself is a descend-
ent of TCustomGrid. In order to dis-
play the “red letter days” correctly,
the DrawCell method has been
overridden. Whenever a significant
date is encountered, its cell is
painted red by resetting the canvas
brush and rewriting the day in the
cell using TextRect. The component
is forced to repaint itself after each
Refresh or ReadDatesFromStream by
calling Invalidate. This ensures
that the modified DrawCell method

fires and the calendar highlights
the dates, even if the calendar
hasn’t already been redrawn.

Finally, the Click method has
been modified to display a popup
menu whenever a user selects a
significant date. And that’s it.

Bringing It All Together
The project TestCalendar on the
disk shows both the cached combo
and calendar in action. Typically,
calendar dates would be held on a
server. However, for the demo, a
basic set of significant dates for the
UK is included in the Paradox table
CALENDAR.DB. At present, the
calendar component assumes that
each date represents only one

occasion, but it could easily be ex-
tended to show multiple occasions
against each date.

Caching can be a useful tool in
the client/sever developer’s ar-
moury. As we’ve seen, data caching
can enable database load to be par-
tially transferred to the client mak-
ing use of abundant PC resources.
There is also potential for caches
to maintain user preferences
between application sessions.

Neil McClements is a consultant
developer specialising in client/-
server banking systems. Email Neil
at nmcclements@pemail.net
© 1997 Neil McClements

unit CachedCalendar;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, Grids, Calendar,DBCtrls, DBTables,DB,Menus;
type
 TSpecialDateList = Class(TComponent)
 private
 FDate : TDatetime;
 FOccasion : string;
 published
 property Date: TDatetime read FDate write FDate;
 property Occasion: string read FOccasion write FOccasion;
 end;
 TCachedCalendar = class(TCalendar)
 private
 FConfigFile : string;
 FUseCache : boolean;
 FDateFieldDataLink : TFieldDataLink;
 FTextFieldDataLink : TFieldDataLink;
 FDateList : TList;
 FDatePopupMenu : TPopupMenu;
 procedure DataChange(Sender : TObject);
 function GetDataSource : TDataSource;
 function GetDateField : string;
 function GetTextField : string;
 procedure SetDataSource(theSource : TDataSource);
 procedure SetDateField(const theFieldName : string);
 procedure SetTextField(const theFieldName : string);
 protected
 procedure Click; override;
 procedure DrawCell(ACol, ARow : Longint; ARect : TRect;
 AState : TGridDrawState); override;
 procedure Notification(AComponent : TComponent;
 Operation : TOperation);
 function ReadDatesFromStream : boolean;
 procedure SetUseCache(CacheOnOff : boolean);

 function WriteDatesToStream : boolean;
 public
 constructor Create(Owner : TComponent);override;
 destructor Destroy; override;
 function Refresh : boolean;
 published
 property ConfigFile : string
 read FConfigFile write FConfigFile;
 property DataSource : TDataSource
 read GetDataSource write SetDataSource;
 property DateField : string
 read GetDateField write SetDateField;
 property TextField : string
 read GetTextField write SetTextField;
 property UseCache : boolean
 read FUseCache write SetUseCache default false;
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents(’more...’, [TCachedCalendar]);
end;
constructor TCachedCalendar.Create(Owner : TComponent);
var exePath : string;
begin
 inherited Create(Owner);
 { Configure two data links, one for the special date field
 and the other for the occasion text (eg “New Year’s Day”)
 FDateFieldDataLink := TFieldDataLink.Create;
 FTextFieldDataLink := TFieldDataLink.Create;
 FDateFieldDataLink.OnDataChange := DataChange;
 FTextFieldDataLink.OnDataChange := DataChange;
 { Default config file used to cache dates between sessions}
 if FConfigFile=’’ then begin
 exePath := ExtractFilePath(application.exename);
 { *** CONTINUED ON NEXT PAGE ––> }

➤ Listing 6

April 1997 The Delphi Magazine 49

{ ** LISTING 6 CONTINUED FROM PREVIOUS PAGE }
 FConfigFile := exePath+’Calendar.cfg’;
 end;
 RegisterClass(TSpecialDateList);
 FDateList := TList.Create;
 FUseCache := false;
end;
destructor TCachedCalendar.Destroy;
begin
 if assigned(FDateFieldDataLink) then
 FDateFieldDataLink.free;
 if assigned(FTextFieldDataLink) then
 FTextFieldDataLink.free;
 FDateList.free;
 inherited Destroy;
end;
procedure TCachedCalendar.SetUseCache(CacheOnOff : boolean);
begin
 if (CacheOnOff=true) then ReadDatesFromStream
 else Refresh;
end;
function TCachedCalendar.Refresh : boolean;
var
 dSet : TDataset;
 theDate : TDateTime;
 theOccasion : string;
 DateInfo : TSpecialDateList;
begin
 if (assigned(FDateFieldDataLink) and
 (DataSource<>nil)) then begin
 FDateList.clear;
 dSet := DataSource.Dataset;
 dSet.Active := true;
 dSet.first;
 while not dSet.eof do begin
 DateInfo := TSpecialDateList.create(Owner);
 DateInfo.Date := dSet.FieldByName(
 FDateFieldDataLink.FieldName).AsDatetime;
 DateInfo.Occasion := dSet.FieldByName(
 FTextFieldDataLink.FieldName).AsString;
 FDateList.add(DateInfo);
 dSet.next;
 end;
 Result := WriteDatesToStream;
 end else Result := false;
 Invalidate;
end;
function TCachedCalendar.WriteDatesToStream : boolean;
var
 stream : TfileStream;
 DateInfo : TSpecialDateList;
 c : longint;
begin
 try
 stream := TFileStream.create(
 FConfigFile, fmCreate or fmOpenWrite);
 for c := 0 to (FDateList.count-1) do begin
 DateInfo := FDateList.items[c];
 stream.WriteComponent(DateInfo);
 end;
 stream.free;
 Result := true;
 except
 on E : exception do Result := false;
 end; {except }
end; { function }
function TCachedCalendar.ReadDatesFromStream : boolean;
var stream : TfileStream;
 ListComponent : TComponent;
begin
 try
 FDateList.clear;
 stream := TfileStream.create(FConfigFile, fmopenread);
 while not (stream.position = stream.size) do begin
 ListComponent := stream.ReadComponent(nil);
 if (ListComponent is TSpecialDateList) then begin
 FDateList.add((ListComponent as TSpecialDateList));
 end;
 end;
 stream.free;
 Result := true;
 except
 on E : EFOpenError do Result := false;
 end; { except }
 Invalidate;
end;
function TCachedCalendar.GetDateField : string;
begin
 GetDateField := FDateFieldDataLink.FieldName;
end;
function TCachedCalendar.GetDataSource : TDataSource;
begin
 GetDataSource := FDateFieldDataLink.DataSource;
end;
procedure TCachedCalendar.SetDateField(
 const theFieldName : string);
begin
 FDateFieldDataLink.FieldName := theFieldName;
end;

procedure TCachedCalendar.SetDataSource(
 theSource : TDataSource);
begin
 FDateFieldDataLink.DataSource := theSource;
end;
function TCachedCalendar.GetTextField : string;
begin
 GetTextField := FTextFieldDataLink.FieldName;
end;
procedure TCachedCalendar.SetTextField(
 const theFieldName : string);
begin
 FTextFieldDataLink.FieldName := theFieldName;
end;
procedure TCachedCalendar.DataChange(Sender : TObject);
begin
 if FDateFieldDataLink.Field = nil then
 FUseCache := ReadDatesFromStream;
end;
procedure TCachedCalendar.Notification(
 AComponent : TComponent; Operation: TOperation);
begin
 inherited Notification(AComponent, Operation);
 if (Operation = opRemove) and (FDateFieldDataLink <> nil)
 and (AComponent = DataSource) then DataSource := nil;
end;
procedure TCachedCalendar.DrawCell(ACol, ARow : Longint;
 ARect : TRect; AState : TGridDrawState);
var
 CellValue : string;
 CellDate : TDatetime;
 SearchDate : TSpecialDateList;
 d : longint;
begin
 inherited;
 CellValue := CellText[Acol, ARow];
 if ((CellValue<>’’) and (ARow<>0)) then begin
 try
 CellDate :=
 encodedate(Year, Month, StrToInt(CellValue));
 for d := 0 to (FDateList.count-1) do begin
 SearchDate := FDateList[d];
 if (SearchDate.Date=CellDate) then begin
 { When a red letter day”is found, paint cell red! }
 Canvas.Brush.Color := clRed;
 Canvas.font.color := clBlack;
 with ARect, Canvas do
 TextRect(ARect, Left + (Right - Left - TextWidth(
 CellValue)) div 2, Top + (Bottom - Top -
 TextHeight(CellValue)) div 2, CellValue);
 break; { leave the loop }
 end; { if }
 end; { for }
 except
 on e : exception do showmessage(inttostr(arow))
 end;
 end; { if }
end;
procedure TCachedCalendar.Click;
const
 BUTTON_LEFT_OFFSET = 10;
 BUTTON_TOP_OFFSET = 10;
var
 Point : TPoint;
 CellValue : string;
 CellDate : TDatetime;
 SearchDate : TSpecialDateList;
 d : longint;
begin
 GetCursorPos(Point);
 inherited Click;
 CellValue := CellText[Col,Row];
 if ((CellValue<>’’) and (Row<>0)) then begin
 try
 CellDate :=
 encodedate(Year, Month, StrToInt(CellValue));
 for d := 0 to (FDateList.count-1) do begin
 SearchDate := FDateList[d];
 if (SearchDate.Date=CellDate) then begin
 if FDatePopupMenu <> nil then FDatePopupMenu.free;
 FDatePopupMenu := TPopupMenu.Create(Self);
 with FDatePopupMenu.Items do begin
 Add(NewItem((FormatDateTime(LongDateFormat,
 SearchDate.Date)), 0, False, true, nil, 0,
 ’PopupMenuItem1’));
 Add(NewLine); { Adds a separator bar }
 Add(NewItem(SearchDate.Occasion, 0, False, true,
 nil, 0, ’PopupMenuItem2’));
 end; { with }
 FDatePopupMenu.Popup((Point.x+BUTTON_LEFT_OFFSET),
 (Point.y+BUTTON_TOP_OFFSET));
 break; { leave the loop }
 end; { if }
 end; { for }
 except
 on e : exception do showmessage(inttostr(Row))
 end;
 end; { if }
end;
end.

50 The Delphi Magazine Issue 20

	Data Caching
	Data Shelf Life
	Caching Using File Streams
	Cached Combo Box
	Cached Calendar Component
	Bringing It All Together

